By Topic

Towards constant bandwidth overhead integrity checking of untrusted data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
D. Clarke ; Comput. Sci. & Artificial Intelligence Lab., MIT, Cambridge, MA, USA ; G. E. Suh ; B. Gassend ; A. Sudan
more authors

We present an adaptive tree-log scheme to improve the performance of checking the integrity of arbitrarily large untrusted data, when using only a small fixed-sized trusted state. Currently, hash trees are used to check the data. In many systems that use hash trees, programs perform many data operations before performing a critical operation that exports a result outside of the program's execution environment. The adaptive tree-log scheme we present uses this observation to harness the power of the constant runtime bandwidth overhead of a log-based scheme. For all programs, the adaptive tree-log scheme's bandwidth overhead is guaranteed to never be worse than a parameterizable worst case bound. Furthermore, for all programs, as the average number of times the program accesses data between critical operations increases, the adaptive tree-log scheme's bandwidth overhead moves from a logarithmic to a constant bandwidth overhead.

Published in:

2005 IEEE Symposium on Security and Privacy (S&P'05)

Date of Conference:

8-11 May 2005