By Topic

Accurate and energy-efficient congestion level measurement in ad hoc networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jaewon Kang ; Dept. of Comput. Sci., Rutgers Univ., USA ; Yanyong Zhang ; B. Nath

Congestion in ad hoc networks not only degrades throughput, but also wastes scarce energy due to a large number of retransmissions and packet drops. For efficient congestion control, an accurate and timely estimation of resource demands by measuring the network congestion level is necessary. Congestion level measurement in ad hoc networks is more difficult than in wired networks due to time-variant channel capacity, contention among neighboring nodes, and non-deterministic node scheduling. We propose a new congestion detection mechanism that quantifies the congestion level accurately and energy-efficiently at both a node-level (implemented at the MAC layer) and a flow-level (implemented at the routing layer) in ad hoc networks. For accurate congestion measurement, a set of metrics that decouple the measurement from various MAC protocol characteristics is defined. For energy-efficient congestion measurement, an asynchronous channel loading measurement scheme, called lazy measurement, which emulates synchronous measurement by using virtual channel sampling, is incorporated into the proposed scheme. Simulation results show that the proposed mechanism significantly cuts down the energy needed to measure congestion accurately, while maintaining the high level of accuracy needed for timely congestion control.

Published in:

IEEE Wireless Communications and Networking Conference, 2005  (Volume:4 )

Date of Conference:

13-17 March 2005