By Topic

A workload-based adaptive load-balancing technique for mobile ad hoc networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Y. J. Lee ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; G. F. Riley

A novel load-balancing technique for ad hoc on-demand routing protocols is presented. Currently, ad hoc routing protocols lack load-balancing capabilities, and thus, they often fail to provide good performance especially in the presence of a large volume of traffic. We present a simple but very effective method to achieve load balance and congestion alleviation. The new scheme is motivated by the observation that ad hoc on-demand routing protocols flood route request (RREQ) messages to acquire routes, and only nodes that respond to those messages have a potential to serve as intermediate forwarding nodes. If a node ignores RREQ messages within a specific period, it can completely be excluded from the additional communications that might have occurred for that period otherwise. Thus, a node can decide not to serve a traffic flow by dropping the RREQ for that flow. In the new scheme, RREQ messages are forwarded selectively according to the load status of each node so that overloaded nodes can be excluded from the requested paths. Each node begins to allow additional traffic flows again whenever its overloaded status is dissolved. The new scheme utilizes interface queue occupancy and workload to control RREQ messages adaptively. The enhanced versions of protocols with this scheme are compared to the base protocols. Simulation results reveal that the new scheme greatly reduces packet latency as well as routing overhead without adversely affecting the network throughput, and it successfully balances the network load among nodes.

Published in:

IEEE Wireless Communications and Networking Conference, 2005  (Volume:4 )

Date of Conference:

13-17 March 2005