By Topic

The validity of the additive noise model for uniform scalar quantizers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Marco, D. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI, USA ; Neuhoff, D.L.

A uniform scalar quantizer with small step size, large support, and midpoint reconstruction levels is frequently modeled as adding orthogonal noise to the quantizer input. This paper rigorously demonstrates the asymptotic validity of this model when the input probability density function (pdf) is continuous and satisfies several other mild conditions. Specifically, as step size decreases, the correlation between input and quantization error becomes negligible relative to the mean-squared error (MSE). The model is even valid when the input density is discontinuous at the origin, but discontinuities elsewhere can prevent the correlation from being negligible. Though this invalidates the additive model, an asymptotic formula for the correlation is found in terms of the step size and the heights and positions of the discontinuities. For a finite support input density, such as uniform, it is shown that the support of the uniform quantizer can be matched to that of the density in ways that make the correlation approach a variety of limits. The derivations in this paper are based on an analysis of the asymptotic convergence of cell centroids to cell midpoints. This convergence is fast enough that the centroids and midpoints induce the same asymptotic MSE, but not fast enough to induce the same correlations.

Published in:

Information Theory, IEEE Transactions on  (Volume:51 ,  Issue: 5 )