Cart (Loading....) | Create Account
Close category search window
 

On factor graphs and the Fourier transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yongyi Mao ; Sr. Dept. of Electr. & Comput. Eng., Univ. of Toronto, Ont., Canada ; Kschischang, F.R.

We introduce the concept of convolutional factor graphs, which represent convolutional factorizations of multivariate functions, just as conventional (multiplicative) factor graphs represent multiplicative factorizations. Convolutional and multiplicative factor graphs arise as natural Fourier transform duals. In coding theory applications, algebraic duality of group codes is essentially an instance of Fourier transform duality. Convolutional factor graphs arise when a code is represented as a sum of subcodes, just as conventional multiplicative factor graphs arise when a code is represented as an intersection of supercodes. With auxiliary variables, convolutional factor graphs give rise to "syndrome realizations" of codes, just as multiplicative factor graphs with auxiliary variables give rise to "state realizations." We introduce normal and co-normal extensions of a multivariate function, which essentially allow a given function to be represented with either a multiplicative or a convolutional factorization, as is convenient. We use these function extensions to derive a number of duality relationships among the corresponding factor graphs, and use these relationships to obtain the duality properties of Forney graphs as a special case.

Published in:

Information Theory, IEEE Transactions on  (Volume:51 ,  Issue: 5 )

Date of Publication:

May 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.