Cart (Loading....) | Create Account
Close category search window

Concatenated codes: serial and parallel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Barg, A. ; Rutgers Univ., Piscataway, NJ, USA ; Zemor, G.

An analogy is examined between serially concatenated codes and parallel concatenations whose interleavers are described by bipartite graphs with good expanding properties. In particular, a modified expander code construction is shown to behave very much like Forney's classical concatenated codes, though with improved decoding complexity. It is proved that these new codes achieve the Zyablov bound δZ on the minimum distance. For these codes, a soft-decision, reliability-based, linear-time decoding algorithm is introduced, that corrects any fraction of errors up to almost δZ/2. For the binary-symmetric channel, this algorithm's error exponent attains the Forney bound previously known only for classical (serial) concatenations.

Published in:

Information Theory, IEEE Transactions on  (Volume:51 ,  Issue: 5 )

Date of Publication:

May 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.