Cart (Loading....) | Create Account
Close category search window

NOAA operational hydrological products derived from the advanced microwave sounding unit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Ferraro, R.R. ; Center for Satellite Applic. & Res., Camp Springs, USA ; Fuzhong Weng ; Grody, N.C. ; Limin Zhao
more authors

With the launch of the NOAA-15 satellite in May 1998, a new generation of passive microwave sounders was initiated. The Advanced Microwave Sounding Unit (AMSU), with 20 channels spanning the frequency range from 23-183 GHz, offers enhanced temperature and moisture sounding capability well beyond its predecessor, the Microwave Sounding Unit (MSU). In addition, by utilizing a number of window channels on the AMSU, the National Oceanic and Atmospheric Administration (NOAA) expanded the capability of the AMSU beyond this original purpose and developed a new suite of products that are generated through the Microwave Surface and Precipitation Products System (MSPPS). This includes precipitation rate, total precipitable water, land surface emissivity, and snow cover. Details on the current status of the retrieval algorithms (as of September 2004) are presented. These products are complimentary to similar products obtained from the Defense Meteorological Satellite Program Special Sensor Microwave/Imager (SSMI) and the Earth Observing Aqua Advanced Microwave Scanning Radiometer (AMSR-E). Due to the close orbital equatorial crossing time between NOAA-16 and the Aqua satellites, comparisons between several of the MSPPS products are made with AMSR-E. Finally, several application examples are presented that demonstrate their importance to weather forecasting and analysis, and climate monitoring.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:43 ,  Issue: 5 )

Date of Publication:

May 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.