Cart (Loading....) | Create Account
Close category search window
 

Comparison of facet temperature and degradation of unpumped and passivated facets of Al-free 940-nm lasers using photoluminescence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Chavan, Ashonita ; TRUMPF Photonics, Cranbury, NJ, USA ; Radionova, R. ; Charache, G.W. ; Menna, R.J.
more authors

Influences of facet degradation of Al-free InGaAsP-GaAs 940-nm laser diodes were studied at power densities well below catastrophic optical mirror damage level using photoluminescence (PL) during normal operation and after a rigorous burn-in procedure. The shift in the PL peak of the cladding layer of the device is used to calculate the temperature of the facet. Devices with different facet treatments: untreated electron beam evaporation, untreated ion beam deposition, unpumped and passivated facets were compared. The results indicate that the degradation of facet is more severe for untreated and unpumped facets as compared to passivated facets. The results were also compared with power measurements, which show that the drop in the power during the first 50 h of operation is nonexistent for passivated facet devices leading to the conclusion that photo-induced oxidation is the major cause of the degradation of the facet and thus oxide removal and surface passivation are crucial to make stable laser diodes.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:41 ,  Issue: 5 )

Date of Publication:

May 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.