By Topic

A 2.5-V 45-Gb/s decision circuit using SiGe BiCMOS logic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dickson, T.O. ; Dept. of Electr. & Comput. Eng., Univ. of Toronto, Ont., Canada ; Beerkens, R. ; Voinigescu, S.P.

A 45-Gb/s BiCMOS decision circuit operating from a 2.5-V supply is reported. The full-rate retiming flip-flop operates from the lowest supply voltage of any silicon-based flip-flop demonstrated to date at this speed. MOS and SiGe heterojunction-bipolar-transistor (HBT) current-mode logic families are compared. Capitalizing on the best features of both families, a true BiCMOS logic topology is presented that allows for operation from lower supply voltages than pure HBT implementations without compromising speed. The topology, based on a BiCMOS cascode, can also be applied to a number of millimeter-wave (mm-wave) circuits. In addition to the retiming flip-flop, the decision circuit includes a broadband transimpedance preamplifier to improve sensitivity, a tuned 45-GHz clock buffer, and a 50-Ω output driver. The first mm-wave transformer is employed along the clock path to perform single-ended-to-differential conversion. The entire circuit, which is implemented in a production 130-nm BiCMOS process with 150-GHz fT SiGe HBT, consumes 288 mW from a 2.5-V supply, including only 58 mW from the flip-flop.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:40 ,  Issue: 4 )