By Topic

An evolutionary algorithm for solving nonlinear bilevel programming based on a new constraint-handling scheme

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yuping Wang ; Fac. of Sci., Xidian Univ., Xi'an, China ; Yong-Chang Jiao ; Hong Li

In this paper, a special nonlinear bilevel programming problem (nonlinear BLPP) is transformed into an equivalent single objective nonlinear programming problem. To solve the equivalent problem effectively, we first construct a specific optimization problem with two objectives. By solving the specific problem, we can decrease the leader's objective value, identify the quality of any feasible solution from infeasible solutions and the quality of two feasible solutions for the equivalent single objective optimization problem, force the infeasible solutions moving toward the feasible region, and improve the feasible solutions gradually. We then propose a new constraint-handling scheme and a specific-design crossover operator. The new constraint-handling scheme can make the individuals satisfy all linear constraints exactly and the nonlinear constraints approximately. The crossover operator can generate high quality potential offspring. Based on the constraint-handling scheme and the crossover operator, we propose a new evolutionary algorithm and prove its global convergence. A distinguishing feature of the algorithm is that it can be used to handle nonlinear BLPPs with nondifferentiable leader's objective functions. Finally, simulations on 31 benchmark problems, 12 of which have nondifferentiable leader's objective functions, are made and the results demonstrate the effectiveness of the proposed algorithm.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)  (Volume:35 ,  Issue: 2 )