By Topic

Knowledge interaction with genetic programming in mechatronic systems design using bond graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jiachuan Wang ; United Technol. Res. Center, East Hartford, CT, USA ; Zhun Fan ; Terpenny, J.P. ; Goodman, E.D.

This paper describes a unified network synthesis approach for the conceptual stage of mechatronic systems design using bond graphs. It facilitates knowledge interaction with evolutionary computation significantly by encoding the structure of a bond graph in a genetic programming tree representation. On the one hand, since bond graphs provide a succinct set of basic design primitives for mechatronic systems modeling, it is possible to extract useful modular design knowledge discovered during the evolutionary process for design creativity and reusability. On the other hand, design knowledge gained from experience can be incorporated into the evolutionary process to improve the topologically open-ended search capability of genetic programming for enhanced search efficiency and design feasibility. This integrated knowledge-based design approach is demonstrated in a quarter-car suspension control system synthesis and a MEMS bandpass filter design application.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:35 ,  Issue: 2 )