By Topic

Agent-based evolutionary approach for interpretable rule-based knowledge extraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hanli Wang ; Dept. of Comput. Sci., City Univ. of Hong Kong, China ; S. Kwong ; Yaochu Jin ; Wei Wei
more authors

An agent-based evolutionary approach is proposed to extract interpretable rule-based knowledge. In the multiagent system, each fuzzy set agent autonomously determines its own fuzzy sets information, such as the number and distribution of the fuzzy sets. It can further consider the interpretability of fuzzy systems with the aid of hierarchical chromosome formulation and interpretability-based regulation method. Based on the obtained fuzzy sets, the Pittsburgh-style approach is applied to extract fuzzy rules that take both the accuracy and interpretability of fuzzy systems into consideration. In addition, the fuzzy set agents can cooperate with each other to exchange their fuzzy sets information and generate offspring agents. The parent agents and their offspring compete with each other through the arbitrator agent based on the criteria associated with the accuracy and interpretability to allow them to remain competitive enough to move into the next population. The performance with emphasis upon both the accuracy and interpretability based on the agent-based evolutionary approach is studied through some benchmark problems reported in the literature. Simulation results show that the proposed approach can achieve a good tradeoff between the accuracy and interpretability of fuzzy systems.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)  (Volume:35 ,  Issue: 2 )