By Topic

General skew constrained clock network sizing based on sequential linear programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kai Wang ; Electr. & Comput. Eng. Dept., Univ. of California, Santa Barbara, CA, USA ; Ran, Y. ; Hailin Jiang ; Marek-Sadowska, M.

We investigate the problem of clock network sizing subject to general skew constraints. A novel approach based on sequential linear programming is presented. The original nonlinear programming problem is transformed into a sequence of linear programs by taking the first-order Taylor's expansion of clock path delay with respect to buffer and/or wire widths. For each linear program, the sensitivities of clock path delay, with respect to buffer and/or wire widths, are efficiently updated by applying time-domain analysis to the clock network in a divide-and-conquer fashion. Our technique can take into account power supply and process variations. We demonstrate experimentally that the proposed technique is not only capable of optimizing effectively the skew and area of clock network, but also of providing more accurate delay and skew results compared to the traditional approaches.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:24 ,  Issue: 5 )