Cart (Loading....) | Create Account
Close category search window
 

Early-stage power grid analysis for uncertain working modes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Haifeng Qian ; Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Nassif, S.R. ; Sapatnekar, S.S.

High-performance integrated circuits are now reaching the 100-plus watt regime, and power delivery and power grid signal integrity have become critical. Analyzing the performance of the power delivery system requires knowledge of the current drawn by the functional blocks that comprise a typical hierarchical design. However, current designs are of such complexity that it is difficult for a designer to determine what a realistic worst-case switching pattern for the various blocks would be in order to maximize noise at a specific location. This paper uses information about the power dissipation of a chip to derive an upper bound on the worst-case voltage drop at an early stage of design. An exact integer linear programming (ILP) method is first developed, followed by an effective heuristic to speed up the exact method. A circuit of 43 K nodes is analyzed within 70 s, and the worst-case scenarios found correlate well with the results from an ILP solver.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:24 ,  Issue: 5 )

Date of Publication:

May 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.