Cart (Loading....) | Create Account
Close category search window
 

A new scheme of conical-wedge-shaped fiber endface for coupling between high-power laser diodes and single-mode fibers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Szu-Ming Yeh ; Inst. of Electro-Opt. Eng., Nat. Sun Yat-sen Univ., Kaohsiung, Taiwan ; Sun-Yuan Huang ; Wood-Hi Cheng

A new scheme for the lensed fiber employing a conical-wedge-shaped fiber endface (CWSFE) for coupling between the high-powered 980-nm laser diodes and single-mode fibers (SMFs) is proposed. The CWSFE was fabricated by following grinding and polishing techniques and then through heating in a fusing splicer to form an elliptical microlens endface. A coupling efficiency of 84% has been demonstrated. The higher coupling efficiency of the CWSFE lensed fiber was attributed to the better matching of both the elliptical Gaussian field distribution and the aspect ratio between the laser source and the fiber. In comparison to other fabrication techniques of lensed fiber used in high-power diode lasers, the advantages of this novel CWSFE structure are the ability to control over two axial curvatures and a small fiber offset through grinding and polishing processes to form a good elliptical endface. The results of this study have led to the development of a simple and reproducible fabrication process for achieving a high-yield and high-coupling CWSFE structure that is suitable for use in commercial high-power pump laser modules.

Published in:

Lightwave Technology, Journal of  (Volume:23 ,  Issue: 4 )

Date of Publication:

April 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.