Cart (Loading....) | Create Account
Close category search window

RINGOSTAR: an evolutionary AWG-based WDM upgrade of optical ring networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Herzog, M. ; Telecommun. Networks Group, Tech. Univ. Berlin, Germany ; Maier, M. ; Wolisz, A.

The paper describes the study of the multichannel upgrade of IEEE Standard 802.17 Resilient Packet Ring (RPR) in particular and optical single-channel ring networks in general by making use of wavelength-division multiplexing (WDM). The paper describes and discusses a novel evolutionary multichannel upgrade approach that uses WDM on a central passive arrayed-waveguide grating (AWG)-based single-hop star network rather than on the ring. The AWG-based star subnetwork allows for a dramatically larger spatial reuse of WDM wavelength channels than conventional upgrades of optical single-channel ring networks that use WDM on the ring where all nodes need to be WDM upgraded. In the resultant hybrid optical ring-star network, termed RINGOSTAR, only a subset of the nodes are required to be WDM upgraded with a single additional tunable transceiver in order to improve the performance dramatically. The novel concept of proxy stripping is also introduced, which is used to route ring traffic on single-hop short cuts across the star subnetwork rather than the peripheral ring, resulting in a dramatically increased spatial reuse factor on the ring. By means of analysis, the performance of RINGOSTAR is investigated in terms of mean hop distance, spatial reuse, and capacity. The findings show that RINGOSTAR significantly outperforms unidirectional, bidirectional, and meshed WDM rings. Finally, the tradeoffs of RINGOSTAR are addressed.

Published in:

Lightwave Technology, Journal of  (Volume:23 ,  Issue: 4 )

Date of Publication:

April 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.