By Topic

Wavelength-selective 1×K switches using free-space optics and MEMS micromirrors: theory, design, and implementation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)

The design and performance of several generations of wavelength-selective 1×K switches are reviewed. These optical subsystems combine the functionality of a demultiplexer, per-wavelength switch, and multiplexer in a single, low-loss unit. Free-space optics is utilized for spatially separating the constituent wavelength division multiplexing (WDM) channels as well as for space-division switching from an input optical fiber to one of K output fibers (1×K functionality) on a channel-by-channel basis using a microelectromechanical system (MEMS) micromirror array. The switches are designed to provide wide and flat passbands for minimal signal distortion. They can also provide spectral equalization and channel blocking functionality, making them well suited for use in transparent WDM optical mesh networks.

Published in:

Lightwave Technology, Journal of  (Volume:23 ,  Issue: 4 )