By Topic

Scheduling algorithms for shared fiber-delay-line optical packet Switches-part I: the single-stage case

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liew, S.Y. ; Fac. of Inf. & Commun. Technol., Univ. Tunku Abdul Rahman, Selangor, Malaysia ; Gang Hu ; Chao, H.J.

In all-optical packet switching, packets may arrive at an optical switch in an uncoordinated fashion. When contention occurs, fiber delay lines (FDLs) are needed to delay (buffer) the packets that have lost the contention to some future time slots for the desired output ports. There have been several optical-buffered switch architectures and FDL assignment algorithms proposed in the literature. However, most of them either have high implementation complexity or fail to schedule in advance departure time for the delayed packets. This paper studies the packet scheduling algorithms for the single-stage shared-FDL optical packet switch. Three new FDL assignment algorithms are proposed, namely sequential FDL assignment (SEFA), multicell FDL assignment (MUFA), and parallel iterative FDL assignment (PIFA) algorithms for the switch. The proposed algorithms can make FDLs and output-port reservation so as to schedule departure time for packets. Owing to FDL and/or output-port conflicts, the packets that fail to be scheduled are discarded before entering the switch so that they do not occupy any FDL resources. It is shown by simulation that with these algorithms, the optical-buffered switch can achieve a loss rate of ∼10-7 even at the load of 0.9. These algorithms are extended to the three-stage Clos-Network optical packet switches in the companion paper.

Published in:

Lightwave Technology, Journal of  (Volume:23 ,  Issue: 4 )