Cart (Loading....) | Create Account
Close category search window
 

High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yitang Dai ; Dept. of Electron. Eng., Tsinghua Univ., Beijing, China ; Xiangfei Chen ; Ximing Xu ; Chongcheng Fan
more authors

Based on strongly chirped sampled fiber Bragg grating and phase shifts, a novel approach to obtain high channel-count comb filters is proposed in this letter. Various channel spacing can be achieved by a single strongly chirped phase mask where the required phase shifts can be gained by a precise translation stage. Comb filters with channel spacing of 50, 100, and 200 GHz are then designed with the same phase mask. Experimentally, a 35-channel 100-GHz channel-spacing comb filter is fabricated, from which one can expect that high-performance comb filter with various channel spacing can be fabricated by conventional technology.

Published in:

Photonics Technology Letters, IEEE  (Volume:17 ,  Issue: 5 )

Date of Publication:

May 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.