By Topic

Impact of interferences on connectivity in ad hoc networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dousse, O. ; Ecole Polytechnique Fed. de Lausanne, Switzerland ; Baccelli, F. ; Thiran, P.

We study the impact of interferences on the connectivity of large-scale ad hoc networks, using percolation theory. We assume that a bi-directional connection can be set up between two nodes if the signal to noise ratio at the receiver is larger than some threshold. The noise is the sum of the contribution of interferences from all other nodes, weighted by a coefficient γ, and of a background noise. We find that there is a critical value of γ above which the network is made of disconnected clusters of nodes. We also prove that if γ is nonzero but small enough, there exist node spatial densities for which the network contains a large (theoretically infinite) cluster of nodes, enabling distant nodes to communicate in multiple hops. Since small values of γ cannot be achieved without efficient CDMA codes, we investigate the use of a very simple TDMA scheme, where nodes can emit only every nth time slot. We show that it achieves connectivity similar to the previous system with a parameter γ/n.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:13 ,  Issue: 2 )