By Topic

SMCA: a general model for mining asynchronous periodic patterns in temporal databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kuo-Yu Huang ; Dept. of Comput. Sci. & Inf. Eng., Nat. Central Univ., Taoyuan, Taiwan ; Chia-Hui Chang

Mining periodic patterns in time series databases is an important data mining problem with many applications. Previous studies have considered synchronous periodic patterns where misaligned occurrences are not allowed. However, asynchronous periodic pattern mining has received less attention and only been discussed for a sequence of symbols where each time point contains one event. In this paper, we propose a more general model of asynchronous periodic patterns from a sequence of symbol sets where a time slot can contain multiple events. Three parameters min_rep, max_dis, and global_rep are employed to specify the minimum number of repetitions required for a valid segment of nondisrupted pattern occurrences, the maximum allowed disturbance between two successive valid segments, and the total repetitions required for a valid sequence. A 4-phase algorithm is devised to discover periodic patterns from a time series database presented in vertical format. The experiments demonstrate good performance and scalability with large frequent patterns.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:17 ,  Issue: 6 )