Cart (Loading....) | Create Account
Close category search window
 

Genetic algorithm to improve SVM based network intrusion detection system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dong Seong Kim ; Dept. of Comput. Eng., Hankuk Aviation Univ., Seoul, South Korea ; Ha-Nam Nguyen ; Jong Sou Park

In this paper, we propose genetic algorithm (GA) to improve support vector machines (SVM) based intrusion detection system (IDS). SVM is relatively a novel classification technique and has shown higher performance than traditional learning methods in many applications. So several security researchers have proposed SVM based IDS. We use fusions of GA and SVM to enhance the overall performance of SVM based IDS. Through fusions of GA and SVM, the "optimal detection model" for SVM classifier can be determined. As the result of this fusion, SVM based IDS not only select "optimal parameters "for SVM but also "optimal feature set" among the whole feature set. We demonstrate the feasibility of our method by performing several experiments on KDD 1999 intrusion detection system competition dataset.

Published in:

Advanced Information Networking and Applications, 2005. AINA 2005. 19th International Conference on  (Volume:2 )

Date of Conference:

28-30 March 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.