By Topic

Fine granularity scalable video: implications for streaming and a trace-based evaluation methodology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
P. Seeling ; Arizona State Univ., AZ, USA ; P. de Cuetos ; M. Reisslein

Fine granularity scalability (FGS) is a new development in the area of video coding, which is designed to facilitate video streaming over communication networks. With FGS coding, the video stream can be flexibly truncated at very fine granularity to adapt to the available network resources. In this article, we introduce the communications generalist to the basic properties of FGS video coding to provide background for the design of video streaming mechanisms for FGS video. We then outline a methodology for evaluating streaming mechanisms for FGS encoded video. The methodology relies on traces of the rate-distortion characteristics of FGS encoded video and enables networking researchers and practitioners without access to video codecs and video sequences to develop and evaluate rate distortion optimized streaming mechanisms for FGS encoded video.

Published in:

IEEE Communications Magazine  (Volume:43 ,  Issue: 4 )