By Topic

Distributed power allocation and scheduling for parallel channel wireless networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiangping Qin ; Dept. of Electr. Comput. Eng., Northwestern Univ., Evanston, IL, USA ; Berry, R.

In this paper, we develop distributed approaches for power allocation and scheduling in wireless access networks. We consider a model where users communicate over a set of parallel multi-access fading channels, as in an OFDM or multi-carrier system. At each time, each user must decide which channels to transmit on and how to allocate its power over these channels. We give distributed power allocation and scheduling policies where each user's actions depend only on knowledge of their own channel gains. We characterize an optimal policy which maximizes the system throughput and also give a simpler sub-optimal policy which is shown to have the optimal scaling behavior in several asymptotic regimes.

Published in:

Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, 2005. WIOPT 2005. Third International Symposium on

Date of Conference:

3-7 April 2005