By Topic

Flow past a stationary and moving cylinder: DNS at Re=10,000

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dong, S. ; Div. of Appl. Math., Brown Univ., Providence, RI, USA ; Lucor, D. ; Karniadakis, G.E.

We conduct direct numerical simulations with 300 million degrees of freedom of turbulent flows past a stationary and a forced oscillating rigid cylinder at the Reynolds number Re=10,000. This one-order of magnitude increase in Reynolds number (compared to previous DNS) is accomplished by employing a multilevel-type parallel algorithm within the spectral element framework. Comparisons with the available experimental data show that the simulation has captured the flow quantities, mean, and rms statistics of the cylinder wake correctly. We also examine the effect of the randomness in the inflow on the vortex formation at a lower Reynolds number. We demonstrate that noisy inflows cause a vortex shedding-mode switching in the cylinder wake.

Published in:

Users Group Conference (DOD_UGC'04), 2004

Date of Conference:

7-11 June 2004