Cart (Loading....) | Create Account
Close category search window

A bayesian approach to array geometry design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Oktel, U. ; Aselsan Inc., Ankara, Turkey ; Moses, R.L.

In this paper, we consider the design of planar arrays that optimize direction-of-arrival (DOA) estimation performance. We assume that the single-source DOA is a random variable with a known prior probability distribution, and the sensors of the array are constrained to lie in a region with an arbitrary boundary. The Crame´r-Rao Bound (CRB) and the Fisher Information Matrix (FIM) for single-source DOA constitute the basis of the optimality criteria. We relate the design criteria to a Bayesian CRB criterion and to array beamwidth; we also derive closed-form expressions for the design criteria when the DOA prior is uniform on a sector of angles. We show that optimal arrays have elements on the constraint boundary, thus providing a reduced dimension iterative solution procedure. Finally, we present example designs.

Published in:

Signal Processing, IEEE Transactions on  (Volume:53 ,  Issue: 5 )

Date of Publication:

May 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.