Cart (Loading....) | Create Account
Close category search window

An empirical Bayes estimator for in-scale adaptive filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Gendron, P.J. ; Acoust. Div., Naval Res. Lab., Washington, DC, USA

A scale-adaptive filtering scheme is developed for underspread channels based on a model of the linear time-varying channel operator as a process in scale. Recursions serve the purpose of adding detail to the filter estimate until a suitable measure of fidelity and complexity is met. Resolution of the channel impulse response associated with its coherence time is naturally modeled over the observation time via a Gaussian mixture assignment on wavelet coefficients. Maximum likelihood, approximate maximum a posteriori (MAP) and posterior mean estimators, as well as associated variances, are derived. Doppler spread estimation associated with the coherence time of the filter is synonymous with model order selection and a MAP estimate is presented and compared with Laplace's approximation and the popular AIC. The algorithm is implemented with conjugate-gradient iterations at each scale, and as the coherence time is recursively decreased, the lower scale estimate serves as a starting point for successive reduced-coherence time estimates. The algorithm is applied to a set of simulated sparse multipath Doppler spread channels, demonstrating the superior MSE performance of the posterior mean filter estimator and the superiority of the MAP Doppler spread stopping rule.

Published in:

Signal Processing, IEEE Transactions on  (Volume:53 ,  Issue: 5 )

Date of Publication:

May 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.