By Topic

Fourth-order blind identification of underdetermined mixtures of sources (FOBIUM)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Ferreol ; Lab. Traitement du Signal et de L'Image, Rennes Univ., France ; L. Albera ; P. Chevalier

For about two decades, numerous methods have been developed to blindly identify overdetermined (P≤N) mixtures of P statistically independent narrowband (NB) sources received by an array of N sensors. These methods exploit the information contained in the second-order (SO), the fourth-order (FO) or both the SO and FO statistics of the data. However, in practical situations, the probability of receiving more sources than sensors increases with the reception bandwidth and the use of blind identification (BI) methods able to process underdetermined mixtures of sources, for which P>N may be required. Although such methods have been developed over the past few years, they all present serious limitations in practical situations related to the radiocommunications context. For this reason, the purpose of this paper is to propose a new attractive BI method, exploiting the information contained in the FO data statistics only, that is able to process underdetermined mixtures of sources without the main limitations of the existing methods, provided that the sources have different trispectrum and nonzero kurtosis with the same sign. A new performance criterion that is able to quantify the identification quality of a given source and allowing the quantitative comparison of two BI methods for each source, is also proposed in the paper. Finally, an application of the proposed method is presented through the introduction of a powerful direction-finding method built from the blindly identified mixture matrix.

Published in:

IEEE Transactions on Signal Processing  (Volume:53 ,  Issue: 5 )