By Topic

Simulation of negative permittivity and negative permeability by means of evanescent waveguide Modes-theory and experiment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Esteban, J. ; Dept. de Electromagnetismo y Teoria de Circuitos, Univ. Politecnica de Madrid, Spain ; Camacho-Penalosa, C. ; Page, J.E. ; Martin-Guerrero, T.M.
more authors

In this paper, the theoretical foundations of the equivalence between waveguide propagation below cutoff and artificial plasmas are carefully analyzed through the derivation of the propagation constants of normal modes in waveguides filled with anisotropic plasmas. The equivalence between waveguide and dielectric plasma proposed by Marquees et al., which is valid for evanescent TE modes, has a dual counterpart for magnetic plasmas and evanescent TM modes. This new equivalence states that a negative magnetic permeability medium can be simulated by means of TM modes below their cutoff frequencies. The need of an anisotropic filling of the waveguide for the equivalence between plasmas and evanescent modes is also highlighted. To exemplify the applicability of this new equivalence, a structure that implements a double-negative medium has been proposed. Full-wave simulations of the proposed structure and measurements from an experimental setup are presented, both of which corroborate the new equivalence's validity.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:53 ,  Issue: 4 )