By Topic

Hollow metal microneedles for insulin delivery to diabetic rats

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
S. P. Davis ; Milliken Res. Corp., Spartanburg, SC, USA ; W. Martanto ; M. G. Allen ; M. R. Prausnitz

The goal of this study was to design, fabricate, and test arrays of hollow microneedles for minimally invasive and continuous delivery of insulin in vivo. As a simple, robust fabrication method suitable for inexpensive mass production, we developed a modified-LIGA process to micromachine molds out of polyethylene terephthalate using an ultraviolet laser, coated those molds with nickel by electrodeposition onto a sputter-deposited seed layer, and released the resulting metal microneedle arrays by selectively etching the polymer mold. Mechanical testing showed that these microneedles were sufficiently strong to pierce living skin without breaking. Arrays containing 16 microneedles measuring 500 μm in length with a 75 μm tip diameter were then inserted into the skin of anesthetized, diabetic, hairless rats. Insulin delivery through microneedles caused blood glucose levels to drop steadily to 47% of pretreatment values over a 4-h insulin delivery period and were then approximately constant over a 4-h postdelivery monitoring period. Direct measurement of plasma insulin levels showed a peak value of 0.43 ng/ml. Together, these data suggest that microneedles can be fabricated and used for in vivo insulin delivery.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:52 ,  Issue: 5 )