Cart (Loading....) | Create Account
Close category search window

Biotope: an integrated framework for simulating distributed multiagent computational systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Symeonidis, A.L. ; Dept. of Electr. & Comput. Eng., Aristotle Univ. of Thessaloniki, Greece ; Valtos, E. ; Seroglou, S. ; Mitkas, P.A.

The study of distributed computational systems issues, such as heterogeneity, concurrency, control, and coordination, has yielded a number of models and architectures, which aspire to provide satisfying solutions to each of the above problems. One of the most intriguing and complex classes of distributed systems are computational ecosystems, which add an "ecological" perspective to these issues and introduce the characteristic of self-organization. Extending previous research work on self-organizing communities, we have developed Biotope, which is an agent simulation framework, where each one of its members is dynamic and self-maintaining. The system provides a highly configurable interface for modeling various environments as well as the "living" or computational entities that reside in them, while it introduces a series of tools for monitoring system evolution. Classifier systems and genetic algorithms have been employed for agent learning, while the dispersal distance theory has been adopted for agent replication. The framework has been used for the development of a characteristic demonstrator, where Biotope agents are engaged in well-known vital activities-nutrition, communication, growth, death-directed toward their own self-replication, just like in natural environments. This paper presents an analytical overview of the work conducted and concludes with a methodology for simulating distributed multiagent computational systems.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:35 ,  Issue: 3 )

Date of Publication:

May 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.