We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Engineering self-organizing referral networks for trustworthy service selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yolum, P. ; Dept. of Comput. Eng., Bogazici Univ., Istanbul, Turkey ; Singh, M.P.

Developing, maintaining, and disseminating trust in open, dynamic environments is crucial. We propose self-organizing referral networks as a means for establishing trust in such environments. A referral network consists of autonomous agents that model others in terms of their trustworthiness and disseminate information on others' trustworthiness. An agent may request a service from another; a requested agent may provide the requested service or give a referral to someone else. Possibly with its user's help, each agent can judge the quality of service obtained. Importantly, the agents autonomously and adaptively decide with whom to interact and choose what referrals to issue, if any. The choices of the agents lead to the evolution of the referral network, whereby the agents move closer to those that they trust. This paper studies the guidelines for engineering self-organizing referral networks. To do so, it investigates properties of referral networks via simulation. By controlling the actions of the agents appropriately, different referral networks can be generated. This paper first shows how the exchange of referrals affects service selection. It identifies interesting network topologies and shows under which conditions these topologies emerge. Based on the link structure of the network, some agents can be identified as authorities. Finally, the paper shows how and when such authorities emerge. The observations of these simulations are then formulated into design recommendations that can be used to develop robust, self-organizing referral networks.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:35 ,  Issue: 3 )