By Topic

Production of hydrogen and carbon black by methane decomposition using DC-RF hybrid thermal plasmas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Keun Su Kim ; Dept. of Nucl. Eng., Seoul Nat. Univ., South Korea ; Jun Ho Seo ; Jun Seok Nam ; Won Tae Ju
more authors

A continuous production of carbon black and hydrogen has been investigated by thermal decomposition of methane using a prototype processing system of direct current (dc)-radio frequency (RF) hybrid thermal plasma, which has great advantage over other thermal sources like combustion or dc plasma torches in synthesizing new nanostructured materials by providing high-temperature environment and longer residence time for reactant gases due to its larger hot core region, and lower flow velocity. Appropriate operation conditions and reactor geometries for the effective synthesis process are predicted first from the relevant theoretical bases, such as thermodynamic equilibrium calculations, two-dimensional thermal flow analysis, and chemical kinetic simulation. Based on these derived operation and design parameters, a reaction chamber and a dc-RF hybrid torch are fabricated for the processing system, which is followed by methane decomposition experiments with it. The methane injected into the processing system is converted mostly into hydrogen with a small volume fraction of acetylene, and fine carbon particles of 20-50 nm are identified from their transmission electron microscope images. Material analyses of Brunauer-Emmett-Teller , dibutyl phthalate adsorption, and X-ray diffraction indicate that the synthesized carbon black has excellent properties, such as large surface area, high electrical conductivity, and highly graphitized structures with good crystallization.

Published in:

IEEE Transactions on Plasma Science  (Volume:33 ,  Issue: 2 )