By Topic

Mode Characteristics of radio-frequency atmospheric glow discharges

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jianjun Shi ; Dept. of Electron. & Electr. Eng., Loughborough Univ., UK ; Kong, M.G.

Building on recent experimental and numerical evidence of different glow modes in atmospheric plasmas, this paper reports a systematic study of these modes in radio-frequency (RF) glow discharges in atmospheric helium. Using a one-dimensional (1-D) hybrid computer model, we present detailed characterization of three glow modes, namely the α mode, the α-γ transitional mode, and the γ-mode in a 13.56-MHz atmospheric glow discharge over a wide range of root mean square (RMS) current density from 5 mA/cm2 to 110 mA/cm2. Our focus is on sheath dynamics through spatial and temporal profiles of charged densities, electric field, electron mean energy, sheath thickness, and sheath voltage, and when appropriate our results are compared against experimental data of atmospheric glow discharges and that of glow discharges at reduced gas pressure below 1 torr. Fundamental characteristics of the three glow modes are shown to be distinctively different, and these can be used as a hitherto unavailable route to tailor the operation of radio-frequency atmospheric glow discharges to their intended applications.

Published in:

Plasma Science, IEEE Transactions on  (Volume:33 ,  Issue: 2 )