By Topic

Forensic analysis of nonlinear collusion attacks for multimedia fingerprinting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
H. V. Zhao ; Dept. of Electr. & Comput. Eng., Univ. of Maryland, College Park, MD, USA ; Min Wu ; Z. J. Wang ; K. J. R. Liu

Digital fingerprinting is a technology for tracing the distribution of multimedia content and protecting them from unauthorized redistribution. Unique identification information is embedded into each distributed copy of multimedia signal and serves as a digital fingerprint. Collusion attack is a cost-effective attack against digital fingerprinting, where colluders combine several copies with the same content but different fingerprints to remove or attenuate the original fingerprints. In this paper, we investigate the average collusion attack and several basic nonlinear collusions on independent Gaussian fingerprints, and study their effectiveness and the impact on the perceptual quality. With unbounded Gaussian fingerprints, perceivable distortion may exist in the fingerprinted copies as well as the copies after the collusion attacks. In order to remove this perceptual distortion, we introduce bounded Gaussian-like fingerprints and study their performance under collusion attacks. We also study several commonly used detection statistics and analyze their performance under collusion attacks. We further propose a preprocessing technique of the extracted fingerprints specifically for collusion scenarios to improve the detection performance.

Published in:

IEEE Transactions on Image Processing  (Volume:14 ,  Issue: 5 )