By Topic

Multiframe selective information fusion from robust error estimation theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
John, S. ; Klipsch Sch. of Comput. & Electr. Eng., New Mexico State Univ., Las Cruces, NM, USA ; Vorontsov, M.A.

A dynamic procedure for selective information fusion from multiple image frames is derived from robust error estimation theory. The fusion rate is driven by the anisotropic gain function, defined to be the difference between the Gaussian smoothed-edge maps of a given input frame and of an evolving synthetic output frame. The gain function achieves both selection and rapid fusion of relatively sharper features from each input frame compared to the synthetic frame. Effective applications are demonstrated for image sharpening in imaging through atmospheric turbulence, for multispectral fusion of the RGB spectral components of a scene, for removal of blurred visual obstructions from in front of a distant focused scene, and for high-resolution two-dimensional display of three-dimensional objects in microscopy.

Published in:

Image Processing, IEEE Transactions on  (Volume:14 ,  Issue: 5 )