Cart (Loading....) | Create Account
Close category search window
 

Automatic music classification and summarization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Changsheng Xu ; Inst. for Infocomm Res., Singapore, Singapore ; Maddage, M.C. ; Xi Shao

Automatic music classification and summarization are very useful to music indexing, content-based music retrieval and on-line music distribution, but it is a challenge to extract the most common and salient themes from unstructured raw music data. In this paper, we propose effective algorithms to automatically classify and summarize music content. Support vector machines are applied to classify music into pure music and vocal music by learning from training data. For pure music and vocal music, a number of features are extracted to characterize the music content, respectively. Based on calculated features, a clustering algorithm is applied to structure the music content. Finally, a music summary is created based on the clustering results and domain knowledge related to pure and vocal music. Support vector machine learning shows a better performance in music classification than traditional Euclidean distance methods and hidden Markov model methods. Listening tests are conducted to evaluate the quality of summarization. The experiments on different genres of pure and vocal music illustrate the results of summarization are significant and effective.

Published in:

Speech and Audio Processing, IEEE Transactions on  (Volume:13 ,  Issue: 3 )

Date of Publication:

May 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.