Cart (Loading....) | Create Account
Close category search window

Stereophonic noise reduction using a combined sliding subspace projection and adaptive signal enhancement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Hoya, T. ; Lab. for Adv. Brain Signal Process., Saitama, Japan ; Tanaka, T. ; Cichocki, A. ; Murakami, T.
more authors

A novel stereophonic noise reduction method is proposed. This method is based upon a combination of a subspace approach realized in a sliding window operation and two-channel adaptive signal enhancing. The signal obtained from the signal subspace is used as the input signal to the adaptive signal enhancer for each channel, instead of noise, as in the ordinary adaptive noise canceling scheme. Simulation results based upon real stereophonic speech contaminated by noise components show that the proposed method gives improved enhancement quality in terms of both segmental gain and cepstral distance performance indices in comparison with conventional nonlinear spectral subtraction approaches.

Published in:

Speech and Audio Processing, IEEE Transactions on  (Volume:13 ,  Issue: 3 )

Date of Publication:

May 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.