By Topic

Parallel strategies for local biological sequence alignment in a cluster of workstations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Boukerche, A. ; PARADISE Res. Lab., Ottawa Univ., Ont., Canada ; De Melo, A.C.M.A. ; Ayala-Rincon, M.

Sequence comparison is a basic operation in DNA sequencing projects, and most of sequence comparison methods used are based on heuristics, which are faster but there are no guarantees that the best alignments are produced. On the other hand, the algorithm proposed by Smith-Waterman obtains the best local alignments at the expense of very high computing power and huge memory requirements. In this article, we present and evaluate our experiments with three strategies to run the Smith-Waterman algorithm in a cluster of workstations using a distributed shared memory system. Our results on an eight-machine cluster presented very good speedups and indicate that impressive improvements can be achieved, depending on the strategy used. Also, we present some theoretical remarks on how to reduce the amount of memory used.

Published in:

Parallel and Distributed Processing Symposium, 2005. Proceedings. 19th IEEE International

Date of Conference:

4-8 April 2005