By Topic

A multilayer perceptron solution to the match phase problem in rule-based artificial intelligence systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sartori, Michael A. ; David Taylor Res. Center, Bethesda, MD, USA ; Passino, K.M. ; Antsaklis, P.J.

In rule-based artificial intelligence (AI) planning, expert, and learning systems, it is often the case that the left-hand-sides of the rules must be repeatedly compared to the contents of some working memory. Normally, the intent is to determine which rules are relevant to the current situation (i.e., to find the conflict set). A technique using a multilayer perceptron to solve the match phase problem for rule-based AI systems is presented. A syntax for premise formulas (i.e., the left-hand-sides of the rules) is defined, and working memory is specified. From this, it is shown how to construct a multilayer perceptron that finds all of the rules which can be executed for the current situation in working memory. The complexity of the constructed multilayer perceptron is derived in terms of the maximum number of nodes and the required number of layers. A method for reducing the number of layers to at most three is presented

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:4 ,  Issue: 3 )