By Topic

A services oriented framework for next generation data analysis centers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
H. Wang ; Ohio State Univ., Columbus, OH, USA ; A. Ghoting ; G. Buehrer ; S. Tatikonda
more authors

Over the past decade, advances in computational and sensor technology have enabled us to dynamically collect vast amounts of data from observations, health screening tests, simulations, and experiments at an ever-increasing pace. Knowledge discovery and data mining is an iterative process concerned with deriving interesting, non-obvious, and useful patterns and models from such large volumes of data. Although inexpensive storage is conducive to maintaining said data, accessing and managing it for knowledge discovery and data mining becomes a performance issue when datasets are large, dynamic, and distributed. In this work, we present our vision of a software framework consisting of middleware services to support interactive data mining over dynamic data at data analysis centers built on top of heterogeneous clusters. The design of a sampling service for dynamic data, together with initial performance results, are also presented.

Published in:

19th IEEE International Parallel and Distributed Processing Symposium

Date of Conference:

4-8 April 2005