By Topic

Dynamic Task Scheduling using Genetic Algorithms for Heterogeneous Distributed Computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Page, A.J. ; Dept. of Comput. Sci., Nat. Univ. of Ireland, Maynooth, Ireland ; Naughton, T.J.

An algorithm has been developed to dynamically schedule heterogeneous tasks on heterogeneous processors in a distributed system. The scheduler operates in an environment with dynamically changing resources and adapts to variable system resources. It operates in a batch fashion and utilises a genetic algorithm to minimise the total execution time. We have compared our scheduler to six other schedulers, three batch-mode and three immediate-mode schedulers. We have performed simulations with randomly generated task sets, using uniform, normal, and Poisson distributions, whilst varying the communication overheads between the clients and scheduler. We have achieved more efficient results than all other schedulers across a range of different scenarios while scheduling 10,000 tasks on up to 50 heterogeneous processors.

Published in:

Parallel and Distributed Processing Symposium, 2005. Proceedings. 19th IEEE International

Date of Conference:

04-08 April 2005