Cart (Loading....) | Create Account
Close category search window
 

Impact of Event Logger on Causal Message Logging Protocols for Fault Tolerant MPI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bouteiller, A. ; Univ. de Paris-Sud, Orsay, France ; Collin, B. ; Herault, T. ; Lemarinier, P.
more authors

Fault tolerance in MPI becomes a main issue in the HPC community. Several approaches are envisioned from user or programmer controlled fault tolerance to fully automatic fault detection and handling. For this last approach, several protocols have been proposed in the literature. In a recent paper, we have demonstrated that uncoordinated checkpointing tolerates higher fault frequency than coordinated checkpointing.Moreover causal message logging protocols have been proved the most efficient message logging technique. These protocols consist in piggybacking non deterministic events to computation message. Several protocols have been proposed in the literature. Their merits are usually evaluated from four metrics: a) piggybacking computation cost, b) piggyback size, c) applications performance and d) fault recovery performance. In this paper, we investigate the benefit of using a stable storage for logging message events in causal message logging protocols. To evaluate the advantage of this technique we implemented three protocols: 1) a classical causal message protocol proposed in Manetho, 2) a state of the art protocol known as LogOn, 3) a light computation cost protocol called Vcausal. We demonstrate a major impact of this stable storage for the three protocols, on the four criteria for micro benchmarks as well as for the NAS benchmark.

Published in:

Parallel and Distributed Processing Symposium, 2005. Proceedings. 19th IEEE International

Date of Conference:

04-08 April 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.