By Topic

Improving and Stabilizing Parallel Computer Performance Using Adaptive Backfilling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Talby, D. ; Hebrew Univ., Jerusalem, Israel ; Feitelson, D.G.

The scheduler is a key component in determining the overall performance of a parallel computer, and as we show here, the schedulers in wide use today exhibit large unexplained gaps in performance during their operation. Also, different scheduling algorithms often vary in the gaps they show, suggesting that choosing the correct scheduler for each time frame can improve overall performance. We present two adaptive algorithms that achieve this: One chooses by recent past performance, and the other by the recent average degree of parallelism, which is shown to be correlated to algorithmic superiority. Simulation results for the algorithms on production workloads are analyzed, and illustrate unique features of the chaotic temporal structure of parallel workloads. We provide best parameter configurations for each algorithm, which both achieve average improvements of 10% in performance and 35% in stability for the tested workloads.

Published in:

Parallel and Distributed Processing Symposium, 2005. Proceedings. 19th IEEE International

Date of Conference:

04-08 April 2005