By Topic

Evaluation of Rate-Based Adaptivity in Asynchronous Data Stream Joins

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Plale, B. ; Dept. of Comput. Sci., Indiana Univ., Bloomington, IN, USA ; Vijayakumar, N.

Continuous query systems are an intuitive way for users to access streaming data in large-scale scientific applications containing many hundreds of streams. A challenge in these systems is to join streams in such a way that memory is conserved. Storing events that could not possibly participate in a join any longer wastes memory and limits scalability of the query processing system. This paper reports an experimentwe conducted to validate an algorithm we developed for adaptive rate, adjustable join windows. We posit that a rate-based strategy can result in memory savings, can be sufficiently responsive to rapid changes in stream rates, and can execute with suitably low overhead. Based on the results, we conclude that the algorithm adds between 0.007% and 2.6% overhead, with significant gains in memory utilization possible depending on the particular workload.

Published in:

Parallel and Distributed Processing Symposium, 2005. Proceedings. 19th IEEE International

Date of Conference:

04-08 April 2005