By Topic

LAD: Localization Anomaly Detection forWireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wenliang Du ; Dept. of Electr. Eng., Syracuse Univ., NY, USA ; Lei Fang ; Peng Ning

In wireless sensor networks (WSNs), sensors' locations play a critical role in many applications. Having a GPS receiver on every sensor node is costly. In the past, a number of location discovery (localization) schemes have been proposed. Most of these schemes share a common feature: they use some special nodes, called beacon nodes, which are assumed to know their own locations (e.g., through GPS receivers or manual configuration). Other sensors discover their locations based on the reference information provided by these beacon nodes. Most of the beacon-based localization schemes assume a benign environment, where all beacon nodes are supposed to provide correct reference information. However, when the sensor networks are deployed in a hostile environment, where beacon nodes can be compromised, such an assumption does not hold anymore. In this paper, we propose a general scheme to detect localization anomalies that are caused by adversaries. Our scheme is independent from the localization schemes. We formulate the problem as an anomaly intrusion detection problem, and we propose a number of ways to detect localization anomalies. We have conducted simulations to evaluate the performance of our scheme, including the false positive rates, the detection rates, and the resilience to node compromises.

Published in:

Parallel and Distributed Processing Symposium, 2005. Proceedings. 19th IEEE International

Date of Conference:

04-08 April 2005