By Topic

Performance Implications of Virtualization and Hyper-Threading on High Energy Physics Applications in a Grid Environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)

The simulations used in the field of high energy physics are compute intensive and exhibit a high level of data parallelism. These features make such simulations ideal candidates for Grid computing. We are taking as an example the GEANT4 detector simulation used for physics studies within the ATLAS experiment at CERN. One key issue in Grid computing is that of network and system security, which can potentially inhibit the wide spread use of such simulations. Virtualization provides a feasible solution because it allows the creation of virtual compute nodes in both local and remote compute clusters, thus providing an insulating layer which can play an important role in satisfying the security concerns of all parties involved. However, it has performance implications. This study provides quantitative estimates of the virtualization and hyper-threading overhead for GEANT on commodity clusters. Results show that virtualization has less than 15% run-time overhead, and that the best run time (with the non-SMP licence of ESX VMware) is achieved by using one virtual machine per CPU. We also observe that hyper-threading does not provide an advantage in this application. Finally, the effect of virtualization on run-time, throughput, mean response time and utilization is estimated using simulations.

Published in:

Parallel and Distributed Processing Symposium, 2005. Proceedings. 19th IEEE International

Date of Conference:

04-08 April 2005