By Topic

Fast and Scalable Parallel Matrix Computations on Distributed Memory Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Keqin Li ; Dept. of Comput. Sci., State Univ. of New York, New Paltz, NY, USA

We present fast and scalable parallel computations for a number of important and fundamental matrix problems on distributed memory systems (DMS). These problems include computing the powers, the inverse, the characteristic polynomial, the determinant, the rank, the Krylov matrix, and an LU- and a QR-factorization of a matrix, and solving linear systems of equations. These parallel computations are based on efficient implementations of the fastest sequential matrix multiplication algorithm on DMS. We show that compared with the best known time complexities on PRAM, our parallel matrix computations achieve the same speeds on distributed memory parallel computers (DMPC), and have an extra polylog factor in the time complexities on DMS with hypercubic networks. Furthermore, our parallel matrix computations are fully scalable on DMPC and highly scalable over a wide range of system size on DMS with hypercubic networks. Such fast and scalable parallel matrix computations were not seen before on any distributed memory systems.

Published in:

Parallel and Distributed Processing Symposium, 2005. Proceedings. 19th IEEE International

Date of Conference:

04-08 April 2005