By Topic

Robust Bayesian cameras motion estimation using random sampling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gang Qian ; Dept. of Electr. Eng. & Arts, Media & Eng. Program, Arizona State Univ., Tempe, AZ, USA ; Chellappa, R. ; Qinfen Zheng

In this paper, we propose an algorithm for robust 3D motion estimation of wide baseline cameras from noisy feature correspondences. The posterior probability density function of the camera motion parameters is represented by weighted samples. The algorithm employs a hierarchy coarse-to-fine strategy. First, a coarse prior distribution of camera motion parameters is estimated using the random sample consensus scheme (RANSAC). Based on this estimate, a refined posterior distribution of camera motion parameters can then be obtained through importance sampling. Experimental results using both synthetic and real image sequences indicate the efficacy of the proposed algorithm.

Published in:

Image Processing, 2004. ICIP '04. 2004 International Conference on  (Volume:2 )

Date of Conference:

24-27 Oct. 2004