Cart (Loading....) | Create Account
Close category search window
 

Advanced Analysis of Wearable Sensor Data to Adjust Medication Intake in Patients with Parkinson's Disease

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Sherrill, D.M. ; Dept of Phys. Medicine & Rehabilitation, Harvard Med. Sch., Boston, MA ; Hughes, R. ; Salles, S.S. ; Lie-Nemeth, T.
more authors

The objective of this pilot work is to identify characteristics and measure severity of motor fluctuations in patients with Parkinson's disease (PD) based on wearable sensor data. Improved methods of assessing longitudinal changes in PD would enable optimization of treatment and maximization of patient function. We hypothesize that motor fluctuations accompanying late-stage PD present with predictable features of accelerometer signals recorded during execution of standardized motor tasks. Six patients (age 46-75) with diagnosis of idiopathic PD and levodopa-related motor fluctuations were studied. Subjects performed motor tasks in a "practically-defined OFF" state, and then at 30 minute intervals after medication intake. At each interval, data from 8 uniaxial accelerometers on the upper and lower limbs were recorded continuously, and subjects were videotaped. Features representing motion characteristics such as intensity, rate, regularity, and coordination were derived from the sensor data, and clinical scores were assigned for each task by review of the videotapes. Cluster analysis was performed on feature sets that were expected to reflect severity of parkinsonian symptoms (e.g. bradykinesia) and motor complications (e.g. dyskinesias). Two-dimensional data projections revealed clusters corresponding to the degree of dyskinesia and bradykinesia indicated by clinical scores. These preliminary results support our hypothesis that wearable sensors are sensitive to changing patterns of movement throughout the medication intake cycle, and that automated recognition of motor states using these recordings is feasible

Published in:

Neural Engineering, 2005. Conference Proceedings. 2nd International IEEE EMBS Conference on

Date of Conference:

16-19 March 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.